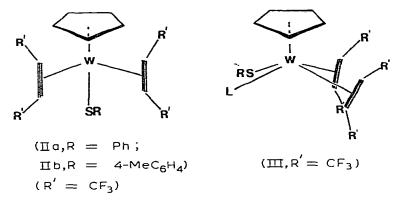
Preliminary communication

COORDINATIVELY UNSATURATED MOLYBDENUM AND TUNGSTEN ACETYLENE COMPLEXES $[M(\eta^5 - C_5 H_5)Cl(CF_3 C=CCF_3)_2]$: REACTIONS WITH CHARGED AND UNCHARGED NUCLEOPHILES

JACK L. DAVIDSON

Department of Chemistry, Heriot-Watt University, Riccarton, Currie, Edinburgh, EH14 4AS (Great Britain)

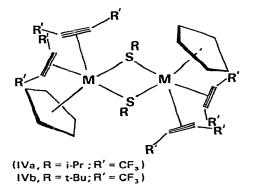

(Received November 19th, 1979)

Summary

The bis-alkyne complex $[M(\eta^5 - C_5 H_5)Cl(CF_3 C \equiv CCF_3)_2]$ (M = W) undergoes metathetical reactions with TISR (R = Ph, 4-MeC_6 H_4, Et, i-Pr or t-Bu) to give complexes of stoichiometry $[W(\eta^5 - C_5 H_5)SR(CF_3 C \equiv CCF_3)_2]$ which, with the more electron donating groups R, exist as sulphur-bridged dimers. Thallium acetate gives $[M(\eta^5 - C_5 H_5)MeC(O)O(CF_3 C \equiv CCF_3)_2]$ (M = Mo, W) with a monodentate acetate ligand while Na S₂ CNR₂ (R = Et) gives $[M(\eta^5 - C_5 H_5)S_2 CNR_2 (CF_3 C \equiv CCF_3)_2]$ (M = Mo, W) containing a bidentate dithiocarbamate ligand. $[W(\eta^5 - C_5 H_5)S-4-MeC_6 H_4 (CF_3 C \equiv CCF_3)_2]$ gives 1/1 adducts in reactions with uncharged nucleophiles PEt₃, PMe₂ Ph and P(OMe)₃. Acetylene propeller rotation is observed in several of these derivatives.

Previous studies have established that coordinatively unsaturated bis-acetylene complexes $[M(\eta^5 - C_5 H_5)X(CF_3 C \equiv CCF_3)_2]$ (M = Mo, W; X = Cl, Br, I) (a) exhibit fluxional behaviour involving propeller rotation of the alkynes about the metal-alkyne axes [1], (b) react with charged nucleophiles $C_6 F_5 S^{-1}$ to give fluxional analogues $[M(\eta^5 - C_5 H_5)SC_6 F_5 (CF_3 C \equiv CCF_3)_2]$ [2], (c) form 1/1 adducts $[M(\eta^5 - C_5 H_5)X(L)(CF_3 C \equiv CCF_3)_2]$ with uncharged nucleophiles $L = PR_3$, which are stereochemically rigid [3]. Complexes $[M(\eta^5 - C_5 H_5)X - C_5 H_5]$ $(CF_3 C \equiv CCF_3)_2$ (I, X = Cl) are the acetylene analogues of highly reactive intermediates $[M(\eta^5 - C_5 H_5)X(CO)_2]$ thought to be involved in CO substitution reactions of $[M(\eta^5 - C_5 H_5)X(CO)_3]$ (X = Cl) [4]. Consequently studies of I are of particular interest since a knowledge of their chemical behaviour may enable a greater understanding of the mechanistic details of CO dissociative reactions to be achieved. We now report studies of reactions between $[M(\eta^5 - C_5 H_5)C|(CF_3 C \equiv CCF_3)_2]$ and nucleophiles which illustrate that the nature of ligand X in $[M(\eta^5 - C_5 H_5)X(CF_3 C \equiv CCF_3)_2]$ has a significant effect on achievement of coordinative saturation by the complex.

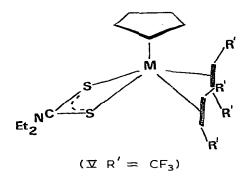
Reactions of TISR (R = Ph, 4-MeC₆ H₄) with $[M(\eta^5 - C_5 H_5)Cl(CF_3 C \equiv CCF_3)_2]$, (M = W) in THF or diethyl ether at 20°C gives monomeric coordinatively unsaturated derivates (IIa, IIb) which exhibit a single CF₃ resonance in their ¹⁹F NMR spectrum down to -90°C. Thus the acetylene propeller rotation indicated by this behaviour, which only becomes significant above -22°C in the parent chloride [5], must occur with substantially lower barrier heights in the mercapto derivatives.



Addition of phosphines $L = PEt_3$, $PMe_2 Ph$ or $P(OMe)_3$ to IIb gives coordinatively saturated 1/1 adducts (III) analogous to the halide complex $[Mo(n^5 - C_5 H_5)Cl(CF_3 C \equiv CCF_3)_2 PPh_3]$ reported previously [3]. These derivatives exhibit four distinct CF_3 signals in the ¹⁹F NMR spectrum at 20°C and appear to be stereochemically rigid. In contrast $P(OPh)_3$, PBz₃ and PPhCy₂ do not react with IIb while with PMePh₂ a yellow crystalline 1/1 adduct is obtained at -20°C. However this dissociates in solution according to ¹H and ¹⁹F NMR studies which indicate that the temperature dependent equilibrium 1 is set up. Thus both steric and electronic effects appear to exert

$$[W(\eta^{5} - C_{5} H_{5})S - 4 - MeC_{6} H_{4} (CF_{3} C \equiv CCF_{3})_{2}] + PMePh_{2} \approx [W(\eta^{5} - C_{5} H_{5})S - 4 - MeC_{6} H_{4} (CF_{3} C \equiv CCF_{3})_{2} PMePh_{2}]$$
(1)

a significant effect on such reactions.


Complexes obtained from the reactions of I (M = W) with TlSR (R = i-Pr, t-Bu) exhibit spectral features similar to those of III i.e. unlike II they are non-fluxional and this can be explained in terms of structure IV. The sulphur

atoms are presumably sufficiently basic as to enable coordination to a second metal whereas with $R = C_6 F_5$, Ph or 4-MeC₆ H₄, this is not the case. Dimerisation via acetylene bridges as observed with $[Nb_2(\eta^5 - C_5 H_5)_2(CO)_4 (PhC=CPh)_2$ [6] and $[Mo_2(\eta^5 - C_5H_5)_2 Cl_2(CF_3C=CCF_3)_2$ [1] seems less probable since the IR spectra of IVa and IVb exhibit $\nu(C=C)$ modes at 1869 and 1858 cm^{-1} , respectively, which compare with 1863 cm^{-1} in III (L = PEt₃) but contrast with 1550 and 1521 cm⁻¹ in $[Mo_2(\eta^5 - C_5 H_5)_2 Cl_2 (CF_3 C \equiv CCF_3)_2$ [1]. Intermediate behaviour is observed with $[W(\eta^5 C_5 H_5$)SEt(CF₃C=CCF₃)₂]_n which exists in both forms at -120°C according to 19 F NMR spectral evidence. Two equal intensity peaks -55.2 and -56.2ppm are ascribed to a stereochemically rigid structure (II), while three multiplets -53.99 (3F), -56.96 (6F), and -57.90 ppm (3F) are characteristic of the dimeric form IV. The peaks due to II coalesce to a singlet above ca. -75° C as propeller rotation commences while the ultimate coalescence of the resulting four signals to a singlet at -57.35 ppm above $+60^{\circ}$ C can be explained in terms of either rapid exchange between II and IV or the existence of the monomeric form II only at such temperatures. A similar situation has been established with the but-2-yne complex $[Mo(n^5 - C_5 H_5)SMe(MeC \equiv CMe)_2]$ [7] and is related to equilibrium 1 described earlier.

The effect of the mercapto substituent on the dimerisation tendency of monomer II follows a similar trend to that found with $[M(\eta^5 - C_5 H_5)SR(CO)_3]$ [8]. With M = Mo, W, R = C₆ F₅ the dimerisation to $[M_2(\eta^5 - C_5 H_5)_2(SC_6 F_5)_2 - (CO)_4]$ cannot be induced whereas the instability of $[Mo(\eta^5 - C_5 H_5)SMe(CO)_3]$ is such that only the dimer is isolable. This is not unexpected since $[M(\eta^5 - C_5 H_5)SR(CO)_2]$, the carbonyl analogue of II, is a possible intermediate in such dimerisation reactions [4].

Reactions of $[M(\eta^{5} - C_{5} H_{5}) Cl(CF_{3} C = CCF_{3})_{2}]$ (M = Mo, W) with salts of potentially bidentate ligands LL = acetate, MeCO₂⁻ or dithiocarbamate $R_{2} NCS_{2}^{-}$ (R = Et), give complexes $[M(\eta^{5} - C_{5} H_{5})(CF_{3} C = CCF_{3})_{2} LL]$ which exhibit comparable trends. Thus the acetate derivatives exhibit two CF₃ peaks at -90°C in the ¹⁹F NMR spectrum which coalesce to a singlet above -40°C, M = Mo; and 0°C, M = W, suggesting that the acetate group is monodentate and that the acetylenes rotate freely. Barriers to rotation are ΔG^{\ddagger} 50 kJ mol⁻¹, M = Mo; ΔG^{\ddagger} 56 kJ mol⁻¹, M = W. In contrast the dithiocarbamate ligand appears to form stereochemically rigid chelate complexes (V) since four CF₃ resonances (cf. III) are observed in all cases at 20°C.

These results indicate that the basicity of donor groups of ligand X in $[M(\eta^5 - C_5 H_5)X(CF_3 C \equiv CCF_3)_2]$ play a significant role in determining whether or not the complexes achieve coordinative saturation, a feature we are at present investigating in more detail. It is therefore apparent that, due to its low σ -donor ability, CO will not form stable complexes [M(η^{5} -C₅ H₅)XCO- $(RC \equiv CR)_2$] (M = Mo, W, X = Cl, Br, I). Thus the isolation of coordinatively unsaturated acetylene complexes $[M(\eta^5 - C_s H_s)X(RC \equiv CR)_2]$ rather than the former from the reactions of $[M(\eta^5 - C_5 H_5)X(CO)_3]$ with acetylenes [1] is explained.

Acknowledgement

I thank the S.R.C. for financial assistance and Dr. A. Boyd, University of Edinburgh for NMR spectra.

References

- 1 J.L. Davidson and D.W.A. Sharp, J. Chem. Soc. Dalton, (1975) 2531.
- 2 J.L. Davidson, M. Green, F.G.A. Stone and A.J. Welch, J. Chem. Soc. Dalton, (1977) 287.
- 3 J.L. Davidson, M. Green, J.Z. Nyathi, F.G.A. Stone and A.J. Welch, J. Chem. Soc. Dalton, (1977) 2246.
- C.A. White and R.J. Mawby, Inorg. Chim. Acta, (1970) 4, 261.
 J.L. Davidson, M. Green, F.G.A. Stone and A.J. Welch, J. Chem. Soc. Dalton, (1976) 738.
- 6 A.N. Nesmayanov, K.N. Anisimov et al., Izv. Akad. Nauk SSR, Ser. Khim., (1966) 774.
- 7 M. Green, personal communication.
- 8 R. Havlin, Ph.D. Thesis, University of Strathclyde, 1967.